Angelo Efthyvoulidis
VP, Global Business Units, Automotive & Transportation
Like most things, it started small. We began using cruise control to monitor driving speed. Then back-up cameras appeared on our consoles. Soon, we were trusting sensors to help us merge across busy lanes. And now? Demand for advanced driver assistance systems (ADAS) is at an all-time high, and with it, the need for evolving manufacturing and sourcing protocols for the automotive industry. Manufacturing ADAS technology to eventually enable fully autonomous driving is no small feat.
Currently, the ADAS market is at Level 2.5 autonomy and moving ever-nearer to Level 3, when eyes off the road offers drivers the opportunity to become just another passenger. Arriving at Level 5 (also known as the age of fully autonomous vehicles) depends upon valuable partnerships in the supply chain that bring experience, capability and scale to the assembly process.
Already, continued improvements in ADAS technology are reducing costs and showcasing practical benefits. Features that once were considered premium upgrades to high-end vehicles are trickling down to the mass-produced car. For example, millions of drivers can barely remember a day when that trusty backup camera did not save them from dents.
Advanced driver assistance systems — like the backup camera, forward collision warning and lane departure warning— continue to offer an optimized driving experience that increases vehicle safety and lessens active driver responsibility. Examples of other ADAS technologies include radar, one of the oldest ADAS technologies deployed. When it first came to market, radar was expensive and rare. Now, it’s fairly commoditized as the primary sensor used in adaptive cruise control, rear cross traffic alert and emergency braking systems.
Yes, there are roadblocks to overcome as partially automated driver assistance systems serve as a bridge from non-autonomous to fully autonomous vehicles. The precise nature of driver assistance system technology translates to challenges and opportunities in manufacturing. Estimates vary regarding how soon the roadways will be full of driverless vehicles; it depends on a myriad of factors surrounding technology advancement, market dynamics, manufacturing partnerships and more.
Features migrating from high-end vehicles to mass-produced cars push the “new normal” closer to the ultimate goal of fully autonomous vehicles. These vital ADAS features may work alone or, more commonly, in tandem. A few of the most visible include:
Consumer technology companies continue to enter the ADAS space to offer their expertise and partnership. Automakers are joining forces as well. For example, Honda, Cruise and GM are joining forces to produce a purpose-built autonomous vehicle to enable their global mobility service business. Volkswagen and Ford both invested in Argo AI, an autonomous vehicle company. The goal? To harness the company’s self-driving system offerings—within vehicles from both Volkswagen and Ford.
Traditionally, automakers would develop technology for their own use. Having a differentiated product in the market was advantageous—and it still is. As ADAS developments continue, though, OEMs are realizing that competing in the technology field has not—and will not—be their new modus operandi. It takes billions to develop these technologies. A partnership with a technology developer makes much more sense.
A typical ADAS platform features a suite of sensors. As the complexity and capability of these sensors increase, so does the cost. Supply challenges affect the timeline of widespread adoption. Components needed for ADAS may also see competition from other sectors, as the world increasingly becomes more technology-driven. Below is a brief examination of current ADAS manufacturing challenges:
The technological components harnessed in ADAS require precision engineering. They are complex, sensitive to environmental effects and thus require protection. For example, the mechanical housing of ADAS element must be resistant to the effects of corrosion, humidity, shock and vibration. A truck driving off-road cannot have a failing mechanical housing. Weather can’t affect ADAS performance. Software must operate seamlessly and without glitches.
Consistent sourcing is also paramount for a successful ADAS supply chain. The precision level of these parts, coupled with software capabilities, has to be optimized. To purport that a vehicle can perform a task instead of its human counterpart is going to take plenty of consistent evidence that results in consequent consumer trust. How many of us still looked over our shoulders for months after first using a backup camera? It’s a valid point to remember as we forecast any mass public acceptance of ADAS elements.
Supply chains that deliver quality components on a constant basis can help automakers to achieve mass adoption of ADAS systems. As they evolve, consistency and quality are key. The more passengers sit back and let the vehicle do the work, the more tightly controlled that automotive supply chain must be.
Take a company that has years of experience in optics manufacturing and automotive (specifically in application areas such as head-up displays, LiDARs and cameras), and such a partnership can speed up time-to-market and assure quality control. There are many ways companies can work together to make advanced driver assistance system developments occur: automotive companies may partner with one specialist for design and another for manufacturing, for instance. The system complexity within ADAS is massive, and companies with different areas of expertise may need to join forces in order to produce complementary hardware solutions.
The main premise is that no one can really succeed in this space alone. It takes a tremendous amount of money to develop and bring-to-market technology, including the systems that harness it. Accomplishing this at scale takes expertise from multiple sides.
When automatic emergency braking prevents a from hitting a pole, a driver benefits from ADAS functionality that is fast becoming the automotive norm. While Level 5 autonomous vehicles are still a distant reality, ADAS cameras and technology are progressively shortening the distance. In the meantime, we must focus on our capabilities surrounding infrastructure and connectivity to enable a world where progressively, all of this is possible.
No matter how complex or demanding the project, we’re helping today’s innovators solve it. Get started with a trusted partner.